Understanding and design of metallic alloys guided by phase-field simulations

نویسندگان

چکیده

Abstract Phase-field method (PFM) has become a mainstream computational for predicting the evolution of nano and mesoscopic microstructures properties during materials processes. The paper briefly reviews latest progresses in applying PFM to understanding thermodynamic driving forces mechanisms underlying microstructure metallic related processes, including casting, aging, deformation, additive manufacturing, defects, etc. Focus on designing alloys by integrating with constitutive relations machine learning. Several examples are presented demonstrate potential integrated discovering new multi-scale phenomena high-performance alloys. article ends prospects promising research directions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extremal region detection guided by maxima of gradient magnitude

a problem of computer vision applications is to detect regions of interest under dif- ferent imaging conditions. the state-of-the-art maximally stable extremal regions (mser) detects affine covariant regions by applying all possible thresholds on the input image, and through three main steps including: 1) making a component tree of extremal regions’ evolution (enumeration), 2) obtaining region ...

Three-dimensional phase-field simulations of coarsening kinetics of c0 particles in binary Ni–Al alloys

The coarsening kinetics of c0 precipitates in binary Ni–Al alloy is studied using three-dimensional (3D) phase-field simulations. The bulk thermodynamic information and atomic diffusion mobilities are obtained from databases constructed using the CALPHAD approach, while the experimental values for the interfacial energy, elastic constants and lattice mismatch are directly employed in the phase-...

متن کامل

Phase-field simulations of velocity selection in rapidly solidified binary alloys.

Time-dependent simulations of two-dimensional isothermal Ni-Cu dendrites are simulated using a phase-field model solved with a finite-difference adaptive mesh refinement technique. Dendrite tip velocity selection is examined and found to exhibit a transition between two markedly different regimes as undercooling is increased. At low undercooling, the dendrite tip growth rate is consistent with ...

متن کامل

Theory-Guided Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties

We present a scale-bridging approach for modeling the integral elastic response of polycrystalline composite that is based on a multi-disciplinary combination of (i) parameter-free first-principles calculations of thermodynamic phase stability and single-crystal elastic stiffness; and (ii) homogenization schemes developed for polycrystalline aggregates and composites. The modeling is used as a ...

متن کامل

Development of Metallic Sensory Alloys

Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: npj computational materials

سال: 2023

ISSN: ['2057-3960']

DOI: https://doi.org/10.1038/s41524-023-01038-z